CALCULATION OF THE INTERACTION OF
SUPERSONIC COUNTER FLOWS

V. B. Balakin and V, V., Bulanov UDC 518:517,944/947

The maximum stable difference scheme of second order accuracy is described for
axisymmetrical flows with shock waves and the results are given of a calculation of
the interaction between an external supersonic flow and a counter supersonic jet
issuing from a cylindrical channel.

1. Formulation of the Problem. In order to calculate gas flows with shock waves, difference
methods of direct calculation have been proposed by different authors. defined by the order of accuracy,
stability and degree of complexity in carrying out the calculation on a computer, It is found, by the prac-
tical application of direct numerical methods, that difference schemes of the first order frequently give a
large error, and that schemes of the third and fourth order are too complex., Schemes of second order
accuracy aré compromises between the so-called classes of schemes and combine satisfactory accuracy
with simplicity of execution,

Several versions of second-order difference schemes are known [1-4]. A scheme is described
in this paper for axisymmetrical flows, which differs from the schemes in [1], [3], and [4] by the increased
stability (the step can be increased by a factor of v2) and from the scheme in [2] by the possibility of using
data about the field of gasdynamic parameters obtained on the previous as well as on the last half-step.

The proposed difference method is used to solve the problem of the interaction between a supersonic
flow incident on a cylindrical body with a counter jet issuing from the body, The counter flow fulfills the
role of an advancing curved profile, reducing the resistance to motion, As a result of this, in front of the
end face of the streamlined cylinder a leading shock wave is formed, the contact surface separating the in-
teracting flows, the counter shock wave and a vortex zone (Fig.1). The determination of the dependence
of the pressure (force loading) at the surface on the flow parameters and the geometry of the body is of
practical interest,

The problem is solved by determining at the initial instant, the field of the parameters correspond-
ing to the instantaneous injection of the cylinder into the supersonic flow, the process of transition to 2
steady-state distribution is then calculated, which is the solution of the streamline flow problem. When a
steady-state streamline flow cycle is achieved, the boundary conditions at the end surface of the body are
changed in such a way that the counter-supersonic flow would be simulated. After this, the solution of the
problem is continued until a new steady-state cycle is obtained.

2, Two-Step Second-Order Difference Scheme, The mathematical model of nonsteady-axisymmetri-
cal flow is a system of Euler equations with the appropriate initial and boundary conditions. The system of
equations is described in divergent form by
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Fig.1, Interaction diagram: 1) external flow; 2) coun-
ter-jet; 3) leading shock wave; 4) counter-shock wave;
5) contact surface; 6) stagnation point; 7) sonic lines;
8) shock waves in the jet; 9) subsonic vortex region,

The parameter v defines the form of symmetry: v = 1 in the axisymmetrical case and v = 0 in the
plane case,

In addition to the general system (1) for splitting the two-dimensional difference operator into one-
dimensional operators, we introduce the supplementary one-dimensional systems:
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The difference approximation of the system is effected by the network
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with constant steps with respect to the space coordinates and with time-steps defined from the condition
of stability [17]. For the approximation, nine points of the reference layer are included, one point of the
denumerable layer and also four points of the intermediate layer with half-integral suffixes,

A four-point maximum-stable local one-dimensional scheme of the first order of accuracy is ef-
fected by a preliminary half-step. If we designate Ly as the difference operator, approximating by a half-
. step the vector equation (2) and we designate Ly as the operator approximating equation (3), then the oper-
ator of the first half-step can be represented as the symmetrical product of Ly and Ly:
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The averaging and difference operators, px, py and 6k, 6y respectively are introduced for com-
pact notation of the working formulas
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Using these operators, the working formulas of the preliminary half-step, effecting relations (4), are re-

presented in the form:
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Fig.2. Isobar field in the variant with My = 2,5 In the second and final half-step, a two-dimen~
and M,y = 3.25, sional version of the "KREST" ("CROSS") scheme is
used:
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In addition to the half-steps (5) and (6), in order to increase the quality of the calculation of the
shock waves, the third stage — smoothing — is carried out, In this stage, the terms of the artificial
viscosity of the third order of smallness are added to the solution obtained:
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It is established experimentally that values of the coefficient of viscosity w should be chosen from
the range 1.0 to 1,5,

The difference 'scheme, Eqs. (5)-(7), has a second order of accuracy on sufficiently smooth solutions
of system (1). The proof of this statement is effected by using expansions of the functions in Taylor series

1.

3. Analysis of the Stability of the Difference Scheme, The practical purpose for analyzing the
stability of the difference equations is to determine the permissible step in time At%, In order to analyze

the stability, the equations are linearized, after which Fourier's method is applied to the linearized equa~-
tions,

As a result of linearization of the general system (1), when v =0, a system with constant coeffi~
cients is obtained:
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A similarity transformation exists with the matrix X, symmetrizing the linearized system of gasdynamic
equations (8), i.e., such that the matrices of the coefficients of the equivalent system
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Fig.3. Field of Mach number isolines for the variant in Fig, 2,

Fig. 4. Dependence of the maximum pressure at the end surface on My, when My =2,5,
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are symmetrical, where V =XU, C =XAX"1, D=X13X"!, The requirements of symmetrization determine
unambiguously the transforming matrix X; its simplest form is the following

0, (9)

(10)

It is not difficult to prove that the norms of the matrix X and X-1 arebounded. Inthe future, therefore, it can
be assumed that in system (8), A and B are symmetrical matrices,

The difference scheme (5)-(6), applied to the linear system (8), is written in the form of vector
equations
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Equation (11) is the linearization of Eq. (5), and Eq. (12) can be considered as the linearized Eq.(6). E is
a unit matrix,

The reaction of the linear difference equations (11) and (12) is investigated on simple harmonic
oscillations, described by the function

Ur, =Erexpi(ke + )], (13)

where ¢ and ¢ are the frequency parameters, Substitution of the vector function (13) in Eq.(11) and (12)
leads to the relation

Enl = Sgn,
in which S — the matrix of transformation of the scheme — is defined by the expression
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For stability of the scheme, it is sufficient that the inequality
(S, g)* <1 (15)
should be satisfied for all unit vectors q [1].
We introduce the notations:
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Using the notations introduced, the left-hand side of Eq. (15) can be written in the form
(Sq, @ =r* - = (1 —2a)* — 4(Ql'q, g)".
But in view of the symmetry of & and according to Schwartz's inequality
(Ql'q, 9)* = (g, Qg)* <C|l'g* |Qg]* = 2.
Consequently,
(Sq, )2 <1 — 20)* - 4aff = | —4a(l —a—B).
It remains to explain the conditions for satisfying the inequality o + 8 = 1. As
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is valid, from which follow the required counditions of stability
hall =<1, b < 1. (16)

In view of the symmetry of the matrices ¢ and b, the conditions of Eq. (16) can be expressed in terms of
eigenvalues and represented in a form which is suitable for use

w1, Tl (17)

From the fact that the schemes of [1], [3] and [4] are stable with the limitations x? = 1/V2, Al = 1
/V'2, it follows that the scheme being described is more stable, Further relaxation of the inequality (17)
is impossible, because the rate of transfer of perturbations in the difference solutions cannot be less than
in the solution of the differential equations (Courant—Friedrichs—Levy condition), Consequently, the dif-
ference scheme has the maximum stability.

4, Results of the Calculations. The solution of the problem being considered, concerning the
counterinteraction of supersonic flows has been carried out in dimensionless parameters, for the reduc-
tion to which the pressure p;, density py, density p; and the radius of the cylinder r; are taken as inde-
pendent units of scale. The 6 parameters My, M,, psy, Py Yy andy are chosen as controlling parameters,

In order to illustrate the possibilities of the method, Figs.2 to 4 show a group of variants differ-
ing in values of M, (over the range from 1.5 to 3,5), with fixed values of the other parameters: p, = 1, p,
=1, My =2,5, ryg =8/15 and v = 1.4. The variants shown are calculated on a network of 40 X 86 elements,
so that the time of calculation of cne variant, using this network, amounted to about 4 h (BfESM—G).
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Figure 2 shows the isobar field, formed as a result of the interaction of streams with M; = 2.5
and M, = 3.25. The magnitude of the egress of the head wave, the location and shape of the counter-wave
and the dimensions of the reduced pressure zones can be estimated by the disposition of the isobars, The
behavior of the isobars in the vicinity of the axis near the end of the cylinder affects the formation in the
jet of an oblique shock wave,

Figure 3 represents the Mach number isolines for the same variant, The region of subsonic flow
is bounded in this figure by two sonic lines (M = 1) each of which, having started at the surface of the cylin-
der, finishes at one of the shock waves — the leading or the counter shock wave.

The graph drawn in Fig, 4 shows how the maximum pressure at the end surface of the body depends
on M,. When M, =0 in the given case, pax = 8.34 and in the variant with M, = 3,25 it is 0.86, Thus, the
counter flow cardinally changes the pattern of streamlined flow and can reduce significantly the pressure
at the surface of the streamlined body.

NOTATION

y, radial coordinate; x, axial coordinate; t, time; p, pressure; p, density; u, axial velocity com-
ponent; v, radial velocity component; e, total specific energy,p(u? + v%)/2 + p(y—1); v, ratio of specific
heats; a, velocity of sound; M, Mach number; Ax, pitch of difference grid with respect to x; Ay, pitch of
difference grid with respect to y; At?, n-th time strip; k, axial index of node of difference grid; I, radial
index of node of difference grid; py, py, My, parameters of the incident flow; py, py, My, parameters of the
counter flow; ry, radius of the body; r, channel radius; r, =r,/ry, ratio of radii.
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